Photoelectrochemical water reduction over wide gap (Ag,Cu)(In,Ga)S2 thin film photocathodes.

نویسندگان

  • Wilman Septina
  • Minori Sugimoto
  • Ding Chao
  • Qing Shen
  • Shigeru Nakatsuka
  • Yoshitaro Nose
  • Takashi Harada
  • Shigeru Ikeda
چکیده

The effects of partial replacement of Cu with Ag in a Cu(In,Ga)S2 (CIGS) thin film on its structural, optical, electrostructural, and photoelectrochemical (PEC) properties were investigated, in order to improve its performance for PEC water reduction under sunlight illumination. Results from X-ray diffraction (XRD) analyses revealed the successful partial replacement of Cu with Ag to form solid-solutions with different Ag/(Ag + Cu) ratios (A(x)CIGS, x = Ag/(Ag + Cu) = 0.1, 0.2, 0.3 and 0.4), as confirmed by a gradual change in the (112) reflections to smaller 2θ angles with increasing Ag/(Ag + Cu) ratio. Analyses of the photoabsorption properties of the materials using photoacoustic spectroscopy indicated changes in the band gap energies associated with increasing the Ag/(Ag + Cu) ratio. In addition, valence band maximum potentials of A(x)CIGS were deepened gradually with increasing Ag/(Ag + Cu) ratio. After modifying these A(x)CIGS films with a CdS ultrathin (ca. 70 nm) layer and a Pt catalyst, the PEC water reduction properties were evaluated in an electrolyte solution with the pH adjusted to 6.5, under simulated sunlight (AM 1.5G) radiation. Compared to the CdS- and Pt-modified Ag-free A(x)CIGS (A(0)CIGS) films, appreciable enhancements in the PEC properties were observed for electrodes based on A(x)CIGS (x > 0) films, and the best PEC performance was obtained for the electrode based on the A(0.2)CIGS film. However, the electrode derived from the A(x)CIGS film with Ag/(Ag + Cu) ratios higher than 0.3 showed diminished PEC properties due to the partial conversion of its semiconducting properties from p-type to n-type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chalcopyrite Thin Film Materials for Photoelectrochemical Hydrogen Evolution from Water under Sunlight

Copper chalcopyrite is a promising candidate for a photocathode material for photoelectrochemical (PEC) water splitting because of its high half-cell solar-to-hydrogen conversion efficiency (HC-STH), relatively simple and low-cost preparation process, and chemical stability. This paper reviews recent advances in copper chalcopyrite photocathodes. The PEC properties of copper chalcopyrite photoc...

متن کامل

Sulphurisation of gallium-containing thin-film precursors analysed in-situ

It has been demonstrated that rapid thermal sulphurisation of sputtered Cu/In precursor layers is suitable for industrial production of thin-film photovoltaic modules. The process is relatively straightforward and the underlying fundamental aspects, such as phase formation sequence and reaction rates, have been studied intensively. Using lab-scale preparation technology, incorporation of galliu...

متن کامل

INVITED FEATURE PAPERS a-Si:H/lc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production

Thin film silicon tandem junction solar cells based on amorphous silicon (a-Si:H) and microcrystalline silicon (lc-Si:H) were developed with focus on high open-circuit voltages for the application as photocathodes in integrated photoelectrochemical cells for water electrolysis. By adjusting various parameters in the plasma enhanced chemical vapor deposition process of the individual lc-Si:H sin...

متن کامل

Surface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting

Given the narrow band gap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for water splitting over hematite (α-Fe2O3) photoanodes. In this study, a facile and inexpensive method was demonstrated to develop core/shell structured α-Fe2O3 nanorod arrays. ...

متن کامل

CO 2 Reduction to Methanol on TiO 2 ‐ Passivated GaP Photocatalysts

6 ABSTRACT: In the past, the electrochemical instability of III−V semi7 conductors has severely limited their applicability in photocatlaysis. As a result, 8 a vast majority of the research on photocatalysis has been done on TiO2, which is 9 chemically robust over a wide range of pH. However, TiO2 has a wide band gap 10 (3.2 eV) and can only absorb ∼4% of the solar spectrum, and thus, it will n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 19  شماره 

صفحات  -

تاریخ انتشار 2017